

# P-Maestro BLM (Board Level Module)

# **Integration Design Guide**



### **Proprietary Notice**

The receiver of the PMAS-BLM Confidential Information shall guarantee to retain all information regarding the PMAS-BLM as restricted and confidential. No information may be confided to any other party.

Elmo Motion Control does not warranty the accuracy of the material or the information contained in any disclosed Confidential Information.

Elmo shall not be liable for any claims, damages, or expenditure (including but not limited to those for personal injuries, wrongful death, property damage, breach of warranty or patent infringement) arising out of the manufacture, use, or sale of goods, to the "Receiver" utilizing any of the PMAS-BLM Confidential Information.

April 2024 (Ver. 2.001)





This guide is delivered subject to the following conditions and restrictions:

- This guide contains proprietary information belonging to Elmo Motion Control Ltd. Such information is supplied solely for the purpose of assisting users of Elmo's servo drive(s) in their installation.
- The text and graphics included in this manual are for the purpose of illustration and reference only. The specifications on which they are based are subject to change without notice.
- Elmo Motion Control and the Elmo Motion Control logo are trademarks of Elmo Motion Control Ltd.
- Information in this document is subject to change without notice.



Elmo Motion Control and the Elmo Motion Control logo are registered trademarks of Elmo Motion Control Ltd.



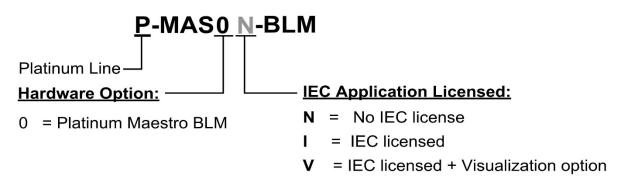


EtherCAT® and Safety over EtherCAT® are registered trademarks and patented technologies, licensed by Beckhoff Automation GmbH, Germany.



EtherCAT® Conformance tested is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.




CANopen compliant. CANopen® is a registered trademark and patented technology, licensed by CAN in Automation (CiA) GmbH, Kontumazgarten 3, DE-90429 Nuremberg, Germany.

Document no. MAN-P-MAESTRO\_BLMIDG (Ver. 2.001)

Copyright © **2024** Elmo Motion Control Ltd.

All rights reserved.

### **Catalog Number**





# Proprietary Notices

### **Revision History**

| Version    | Date     | Details                                      |
|------------|----------|----------------------------------------------|
| Ver. 1.000 | Dec 2017 | Initial release                              |
| Ver. 1.001 | Jan 2018 | Update to Part Number                        |
| Ver. 1.002 | Mar 2018 | Update to Part Number                        |
| Ver. 1.003 | Dec 2018 | Update to Part Number                        |
| Ver. 1.004 | Mar 2019 |                                              |
| Ver. 1.005 | Jan 2020 | Changed banner; added text symbols and icons |
| Ver. 2.000 | May 2021 | Updated template                             |
| Ver. 2.001 | Apr 2024 | Minor text changes                           |



| Chapter 1 | : General Information                   | 6  |
|-----------|-----------------------------------------|----|
| 1.1       | Directives and Standards                | 6  |
| 1.2       | Warranty Information                    | 6  |
| 1.3       | Safety and Text Symbols                 | 6  |
| Chapter 2 | : Product Description                   | 7  |
| 2.1       | Description                             | 7  |
| Chapter 3 | : Technical Specifications              | 8  |
| 3.1       | Processor System                        | 8  |
| 3.2       | Communications                          | 8  |
| 3.3       | Communication Interface                 | 9  |
| 3.4       | Analog Interface                        | 9  |
| 3.5       | Power Supply                            | 9  |
| 3.6       | Physical Specifications                 | 10 |
| 3.7       | General                                 | 10 |
| 3.8       | Environmental Conditions                | 11 |
| Chapter 4 | : P-Maestro BLM Software Specifications | 12 |
| 4.1       | Operating System                        | 12 |
| 4.2       | Axes                                    | 12 |
| 4.3       | Motion Modes and Interfaces             | 13 |
| 4.4       | Drive Communication Bridge Support      | 13 |
| 4.5       | General                                 | 14 |
| 4.6       | Communication Options                   | 14 |
| Chapter 5 | : System Architecture                   | 15 |
| 5.1       | Related Documents                       | 15 |
| Chapter 6 | : Assembly                              | 16 |
| 6.1       | Pin Connectors                          | 16 |
|           | 6.1.1 Power Supply                      |    |
|           | 6.1.2 Communication and I/O             | 18 |
| 6.2       | Mechanics                               | 25 |
|           | 6.2.1 Mating Connector Types            | 26 |
| 6.3       | CAN Communication                       | 27 |
|           | 6.3.1 Overview                          | 27 |
|           | 6.3.2 CAN Speed                         |    |
|           | 6.3.3 CAN Interface                     | 28 |



|    |          | 6.3.4    | CAN Communication over the PCB                                             | 29  |
|----|----------|----------|----------------------------------------------------------------------------|-----|
|    | 6.4      | USB Dev  | vice Connections                                                           | 30  |
|    | 6.5      | USB Hos  | st Connections                                                             | 31  |
|    | 6.6      | Etherne  | t Communications                                                           | 32  |
|    | 6.7      | EtherCA  | T Communications                                                           | 33  |
|    |          | 6.7.1    | EtherCAT Master1 Port                                                      | 33  |
|    |          | 6.7.2    | EtherCAT Master2 Port                                                      | 33  |
|    |          | 6.7.3    | EtherCAT Connectivity to RJ-45                                             |     |
|    |          | 6.7.4    | Connecting the PMAS-BLM EtherCAT Port via the PCB with Capacitive Coupling |     |
|    | 6.8      | Micro SI | D Card Connections                                                         | 36  |
|    | 6.9      | Analog I | nputs Interface                                                            | 37  |
|    | 6.10     | Extende  | d I/O's Interface (optional)                                               | 38  |
|    | 6.11     | Differen | tial I/O Interface (optional)                                              | 39  |
|    | 6.12     | RS232 Ir | nterface                                                                   | 41  |
|    | 6.13     | Layout ( | Guidelines                                                                 | 42  |
|    |          | 6.13.1   | PCB                                                                        | 42  |
|    |          | 6.13.2   | Connection to RJ-45 with Magnetic                                          | 42  |
|    |          | 6.13.3   | Connection with Capacitor                                                  | 42  |
|    |          | 6.13.4   | EtherCAT Differential Signal Layout Guidelines                             | 43  |
|    |          | 6.13.5   | 1GB Ethernet Differential Signal Layout Guidelines                         | 44  |
|    |          | 6.13.6   | USB Host/Device Differential Signal Layout Guidelines                      | 45  |
|    |          | 6.13.7   | CAN Layout Guidelines                                                      | 46  |
|    |          | 6.13.8   | Micro SD Card Layout Guidelines                                            | 46  |
| Cl | napter 7 | : Hea    | at Dissipation                                                             | .47 |
| Cl | napter 8 | : P-N    | Maestro BLM Dimensions                                                     | .49 |
| CI | napter 9 | : Cor    | mpliance with Standards                                                    | .51 |
|    | 9.1      | Low Vol  | tage Directive                                                             | 51  |
|    | 9.2      | Other Co | ompliant Standards                                                         | 51  |





### Chapter 1: General Information

#### 1.1 Directives and Standards

The P-Maestro BLM has been developed, produced, tested and documented in accordance with the relevant standards. Elmo Motion Control is not responsible for any deviation from the configuration and installation described in this documentation. Furthermore, Elmo is not responsible for the performance of new measurements or ensuring that regulatory requirements are met.

### 1.2 Warranty Information

The products covered in this manual are warranted to be free of defects in material and workmanship and conform to the specifications stated either within this document or in the product catalog description. The P-Maestro BLM is warranted for a period of 12 months from the date of shipment. No other warranties, expressed or implied – and including a warranty of merchantability and fitness for a particular purpose – extend beyond this warranty.

### 1.3 Safety and Text Symbols

The following safety symbols are used in this and all Elmo Motion Control manuals:



#### Warning:

This information is needed to avoid a safety hazard, which might cause bodily injury or death as a result of incorrect operation.



#### Caution:

This information is necessary to prevent bodily injury, damage to the product or to other equipment.



#### Important:

Identifies information that is critical for successful application and understanding of the product.

The following symbols are used in this document:



#### Note:

Information critical to the understanding and\or operating the feature.



#### Tip:

Information that helps understanding a feature, is good practice or a possible different way of action.





### Chapter 2: Product Description

This installation guide describes the P-Maestro BLM Network Motion Controller and the steps for its wiring, installation and power up. Following these guidelines ensures maximum functionality of the system to which it is connected.

### 2.1 Description

The P-Maestro BLM is Elmo's premium network motion controller. It works in a network based system in conjunction with Elmo's intelligent servo drives to provide a total multi-axis motion control system solution.

The P-Maestro BLM Motion Controller incorporates an integral high-level computational dual-core system (2 x 1.5 GHz) with limitless memory (RAM, ROM, and SD-Card), and onboard additional hardware peripherals.

The P-Maestro BLM shares the motion processing workload with Elmo's SimplIQ and Gold Line drives, forming a distributed motion control system. The best servo and system performance is achieved by combining the Gold Family drives, and the new real-time motion control capabilities of the P-Maestro BLM controller.

The P-Maestro BLM provides:

- Self-sufficient machine motion control No reliance on connection with PC server
- Time deterministic control over motion, I/Os and processes in the system
- Complete compatibility with recognized networking and communications protocols
- Full, real-time, multi-axis motion synchronization
- Advanced user programming capabilities based on the leading standards
- Unified development platform that streamlines motion control solutions for novice and expert programmers alike

The P-Maestro BLM offers real-time motion control support for full multi-axis system synchronization, using the well-known industry interface PLCopen for Motion Control standard.

Various programming capabilities, such as the IEC-61131-3 standard languages, as well as native C and C++ programming support, dramatically accelerate user-level program execution. Standard solutions are selected for ease of use.

Low-level communication with drives and I/O devices over the device network uses the CAN industry standard (DS 301, DS 401 for I/O devices, and DS 402 for drives and motion device profiles). These are used over standard CAN networks, as well as with the new EtherCAT CoE (CAN over EtherCAT) protocols.

Host interfaces are implemented using industry standard communications protocols, such as Ethernet TCP/IP and higher level protocols such as Ethernet/IP and Modbus.

Standardization in protocols, definitions, and APIs allows users rapid system level integration and opens the system to third party devices on the device network.





## **Chapter 3: Technical Specifications**

### 3.1 Processor System

| Feature        | Details                                                           |
|----------------|-------------------------------------------------------------------|
| Processor      | Computational core system based on Dual Core (2×1.5 GHz)          |
| On Board Flash | 4 GByte                                                           |
| RAM            | DDR-3, 4 GByte, 64 bit bus width, (Operational at Full Core Rate) |
| SD Card        | Standard SD card                                                  |

### 3.2 Communications

| Specification             | Details                                                         |
|---------------------------|-----------------------------------------------------------------|
| Ethernet for Host         | 1 Ethernet port 1000 base-T                                     |
|                           | Automatically detected 10/100/1000Mbps                          |
|                           | CAT5e/6 Cable                                                   |
|                           | UDP, Telnet, TCP                                                |
| EtherCAT Master Field bus | 2 Ethernet port 100 base-T for EtherCAT Master.                 |
|                           | Baud Rate: 100 Mbit/sec                                         |
|                           | CAT5e Cable                                                     |
|                           | CoE, EoE, FoE                                                   |
|                           | EtherCAT Master with Full redundancy support                    |
| CAN for device network    | 1 Port 1Mbps, with Isolation                                    |
|                           | CANopen master port                                             |
|                           | Maximum Baud Rate of 1 Mbits/sec.                               |
|                           | CAN Profile:                                                    |
|                           | DS 301                                                          |
|                           | Device Profile (drive and motion control):                      |
|                           | CAN device profiles, e.g., DS301, DS505, DS402, DS401 (for I/O) |
| USB 3.0                   | Host USB                                                        |
|                           | Supports USB 2.0:                                               |
|                           | Full Speed = 1.5Mbps , Low Speed = 12Mbps,                      |
|                           | or High Speed = 480Mbps                                         |
|                           | USB 3.0, SuperSpeed = 5Mbps is not supported                    |
| USB 2.0                   | Device USB                                                      |
|                           | Supports:                                                       |
|                           | Full Speed = 1.5Mbps , Low Speed = 12Mbps,                      |
|                           | or High Speed = 480Mbps                                         |
| RS-232                    | 1 Standard channel of RS-232                                    |





### 3.3 Communication Interface

| Specification          | Details                                                                                                 |
|------------------------|---------------------------------------------------------------------------------------------------------|
| Serial extended IO Bus | Serial bus that Supports up to 24 inputs and 24 Outputs                                                 |
| RS-485 Channels        | Interface allows connection of up to 9 RS-485 channels (the user should connect the RS-485 transceiver) |
| RS-232                 | Interface to connect a single RS-232 channel (the user should connect the RS-232 transceiver)           |

### 3.4 Analog Interface

| Specification                     | Details                                                                                             |
|-----------------------------------|-----------------------------------------------------------------------------------------------------|
| ADC (Analog-to-digital converter) | Interface to connector external ADC that supports two Differential or 4 Single Ended Analog inputs: |
|                                   | <ul> <li>Resolution of 16 bits</li> <li>Sample rate 1Mbps</li> <li>Voltage 3.3V</li> </ul>          |

### 3.5 Power Supply

| Feature                | Details                           |
|------------------------|-----------------------------------|
| Supply input voltage   | Single power supply, 10.8V to 55V |
| Supply input power     | Typical 7.5 W                     |
| External 3.3V for user | maximum current = 100mA           |
| External 5V for user   | maximum current = 100mA           |





### 3.6 Physical Specifications

| Feature    | Details                        |
|------------|--------------------------------|
| Weight     | 41.0g                          |
| Dimensions | 97.24 x 62.25mm(3.83" x 2.45") |

### 3.7 General

| Feature             | Details                                                                                                                                                                                                                                                                                                                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RTC                 | The Real Time Clock maintains the real time date and hour when the main power source is disconnected.  The RTC operates when connected to a SuperCap. When connected to a SuperCap e.g. of capacitance 1.0F/5.0V, and the P-Maestro BLM is connected to a main power source, the SuperCap will automatically recharge. |
| Internal System BIT | The P-Maestro BLM supports internal hardware BIT (Built-intests) procedures to check the system integrity level on each power up                                                                                                                                                                                       |
| Diagnostic LEDs     | EtherCAT and Ethernet activity                                                                                                                                                                                                                                                                                         |





### 3.8 Environmental Conditions

| Feature                                                    | Details                                                                                                                   |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Operating ambient temperature according to IEC60068-2-2    | 0 °C to 40 °C (32 °F to 104 °F)                                                                                           |
| Storage temperature                                        | -20 °C to +85 °C ( -4 °F to +185 °F)                                                                                      |
| Maximum non-condensing humidity according to IEC60068-2-78 | 90%                                                                                                                       |
| Maximum Operating Altitude                                 | 2,000 m (6562 feet)  It should be noted that servo drives capable of higher operating altitudes are available on request. |
| Mechanical Shock according to IEC60068-2-27                | 15g / 11ms Half Sine                                                                                                      |
| Vibration according to IEC60068-2-6                        | 5 Hz ≤ f ≤ 10 Hz: ±10mm<br>10 Hz ≤ f ≤ 57 Hz: 4G<br>57 Hz ≤ f ≤ 500 Hz:5G                                                 |





# Chapter 4: P-Maestro BLM Software Specifications

### 4.1 Operating System

| Feature                          | Details                                                                                                                                                                                                                    |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Linux Operating System           | With Elmo's RT extension for real-time motion control support                                                                                                                                                              |  |  |
| Motion Programming and Debugging | Native C Programming, running on the target CPU. Compiling and debugging via the Eclipse IDE using GCC under Cygwin.                                                                                                       |  |  |
|                                  | IEC 61131-3 with PLCopen Motion Library extension, using Elmo IDE. The following languages are supported:                                                                                                                  |  |  |
|                                  | Structured text (ST), textual  Function block diagram (FBD), graphical  Ladder diagram (LD), graphical  Sequential function chart (SFC), has elements to organize programs for sequential and parallel control processing. |  |  |

### 4.2 Axes

| Feature                    | Details                                                                                                                    |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Axes                       | Up to 96 axes, allowing mixed single axis, multiple axis and coordinated axes motions                                      |  |
| Axis Types                 | Intelligent Servo Drives (Elmo), supporting both the SimplIQ and Gold lines                                                |  |
|                            | Operation of Maestro Profiler (real-time master synchronization) as well as non-Maestro profiler modes                     |  |
|                            | DS 402 CoE for EtherCAT and standard DS 402 drives for CANopen                                                             |  |
| Control System Update Rate | EtherCAT:                                                                                                                  |  |
|                            | Cycle Simultaneous Update Rates:                                                                                           |  |
|                            | ≥ 250 µs for up to 16 axes                                                                                                 |  |
|                            | 500 μs for 32 axes                                                                                                         |  |
|                            | 1 ms for 64 axes                                                                                                           |  |
|                            | Cycle Jitter: $<$ 1 $\mu$ s, based on Master DC (Distributed Clock) support, for the full network                          |  |
|                            | CAN:                                                                                                                       |  |
|                            | Cycle Update Rate ≥ 1 ms (CAN physical network limitations only)                                                           |  |
|                            | Cycle Jitter: < 100 µs for CAN Sync message initiation (actual jitter dependent on the CAN network's physical limitations) |  |





### 4.3 Motion Modes and Interfaces

| Feature                                                           | Details                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Platinum Maestro<br>motion interfaces use<br>PLCopen Standard | 64 bit, real-time, double precision profile calculations, allowing full on-the-fly control over speed, acceleration, deceleration and jerk Complex motion schemes, including look-ahead optimizing of trajectory speed calculations, for complex vector motions Cyclic buffer for 1,000 function blocks (a buffer for 1,000 motion segments). The cyclical buffer removes any practical limit on the number of function blocks |
| Communication Protocols                                           | Host:  Ethernet TCP-IP/UDP for operational modes  Telnet communication for setup and configuration  USB: Using binary protocol (maintenance)  Application level: Ethernet-IP/Modbus  Device Network:  EtherCAT: CoE/EoE/FoE, supports distributed clock master  CAN: CANopen device profiles, e.g., DS 301, DS 305, DS 402, DS 401  (I/O device profile)                                                                       |
| Host and Internal Software Interface                              | TCP/IP interface from Host Computer. Software Library is provided for easy TCP/IP communication interface.  This version will also support Ethernet-IP and Modbus over the TCP-IP.  Internal Software libraries, for "C" user programs are provided, to write user code running on the Platinum Maestro target processor (native mode).                                                                                        |
| Data Recording  Upload/Download Support                           | 8 MB data recording Up to 64 vectors can be recorded simultaneously. Supports more than 10 advanced triggering options and real-time scope capabilities Very fast data upload using Ethernet Firmware update support (Platinum Maestro and drives)                                                                                                                                                                             |
| Opioau/Download Support                                           | System resource files  Axis parameter files                                                                                                                                                                                                                                                                                                                                                                                    |

### 4.4 Drive Communication Bridge Support

| Feature       | Details                                                               |  |
|---------------|-----------------------------------------------------------------------|--|
| Communication | The Platinum Maestro supports full communication with any             |  |
|               | specific drive (EtherCAT and CAN) for the purpose of simple tuning    |  |
|               | or configuration at the drive level, i.e. there is no need for direct |  |
|               | communication with the drive.                                         |  |





| Feature                                    | Details                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spatial Position-Based Pulse<br>Generation | The Platinum Maestro supports spatial (along the path) position-based pulse generation. This is a unique feature, required for the generation of position-based events in 3D scanning systems.  The Platinum Maestro system, with Elmo's intelligent Gold servo drives, can support single axis and spatial enhanced position-based compare functions, resulting in trigger output signals accurate to 1 encoder count along the trajectory path. |

### 4.5 General

| Feature                | Details                                                              |
|------------------------|----------------------------------------------------------------------|
| Network Encoders       | Supports master based motion on network encoders                     |
| Position Error Mapping | Supports 1-D, 2-D, and 3-D position-based error mapping compensation |

### 4.6 Communication Options

The P-Maestro BLM can communicate with a host PC either via a standard Ethernet port or through USB using a binary protocol for maintenance.

The P-Maestro BLM communicates with its network devices using either EtherCAT or CAN networks.

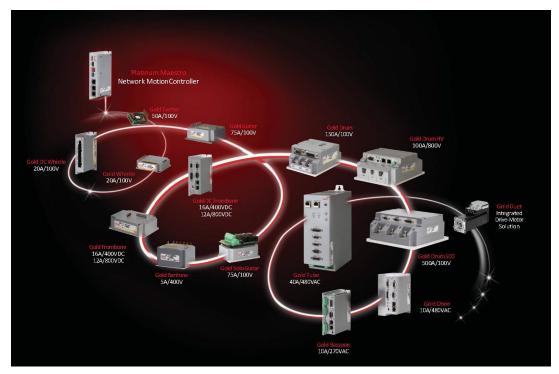



Figure 1: The P-Maestro BLM Network Connections





### Chapter 5: System Architecture

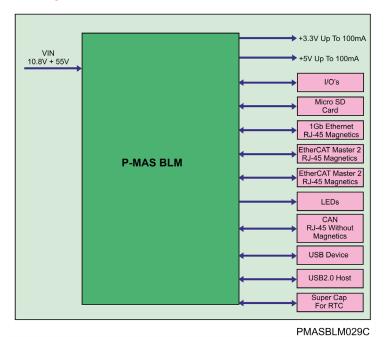



Figure 2: P-Maestro BLM BLM Connections System Block Diagram

### 5.1 Related Documents

This document describes the PMAS-BLM hardware connections, and is part of the set of assembly documents. This set includes the following:

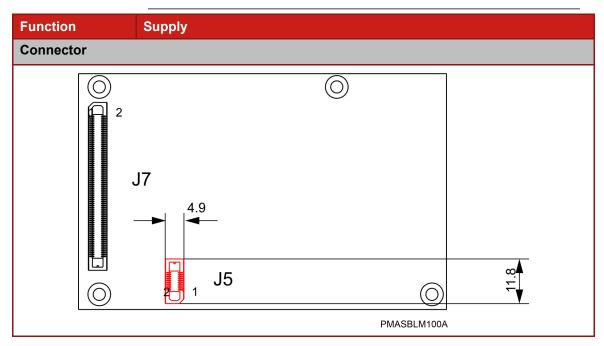
- PMAS-BLM Integration Design Guide
- Schematic drawings in ORCAD 17.2 and PDF.
- The following drawings are to be found within the manual compressed document collection:
  - PMAS BLM V1.DSN (for reference only)
  - PMAS\_BLM\_V1.pdf (for reference only)
  - PMAS-BLM symbol for Algero (pmas\_blm\_v1.dra, pmas\_blm\_v1.psm)
  - PMAS-BLM DXF (pmas\_blm\_v1.dxf)

When this manual is used in conjunction with the Drive Software series of manuals it describes everything necessary to get the P-Maestro BLM up and running.





### Chapter 6: Assembly


This chapter describes the pin to pin connections between the P-MAS BLM and the PCB.

### 6.1 Pin Connectors

### 6.1.1 Power Supply

| Function | Supply                       |                                             |  |
|----------|------------------------------|---------------------------------------------|--|
| Pin Name | J5                           |                                             |  |
| Туре     | Socket 10 pin, 2 rows, 0.5mm |                                             |  |
| No       | Name                         | Description                                 |  |
| B1       | VIN                          | Main power input of the P-MAS BLM Interface |  |
| B2       | VIN                          | Main power input of the P-MAS BLM Interface |  |
| В3       | VIN                          | Main power input of the P-MAS BLM Interface |  |
| B4       | VIN                          | Main power input of the P-MAS BLM Interface |  |
| B5       | COMRET                       | Common Return                               |  |
| В6       | COMRET                       | Common Return                               |  |
| В7       | COMRET                       | Common Return                               |  |
| B8       | COMRET                       | Common Return                               |  |
| B9       | COMRET                       | Common Return                               |  |
| B10      | COMRET                       | Common Return                               |  |
| B11      | 5V                           | 5V output for the user usage                |  |
| B12      | 5V                           | Maximum current consumption 100mA           |  |
| B13      | 5V                           |                                             |  |
| B14      | 5V                           |                                             |  |
| B15      | 5V                           |                                             |  |
| B16      | VDD_SD                       | SD Card Supply Voltage                      |  |
| B17      | VDD_3V3                      | 3.3V output for the user usage              |  |
| B18      | VDD_3V3                      | Maximum current consumption 100mA           |  |
| B19      | PE                           | Protective Earth                            |  |
| B20      | VBAT                         | For RTC                                     |  |





**Table 1: Supply Pin Connector** 





### 6.1.2 Communication and I/O

| Function | Communication and I/O        |      |                         |
|----------|------------------------------|------|-------------------------|
| Name     | J7                           |      |                         |
| Туре     | Socket 75 pin, 2 rows, 0.5mm |      |                         |
| No       | Name                         | Туре | Description             |
| A1       | COMRET                       | PWR  | Common Return           |
| A2       | USB_DEVICE_VBUS              | PWR  | 5V Input for USB Device |
| A3       | Not Used (NU)                |      | Leave unused            |
| A4       | USB2_DP                      | 1/0  | USB2 Data+              |
| A5       | NU                           |      | Leave unused            |
| A6       | USB2_DM                      | I/O  | USB2 Data-              |
| A7       | COMRET                       | PWR  | Common Return           |
| A8       | COMRET                       | PWR  | Common Return           |
| A9       | NU                           |      | Leave unused            |
| A10      | USB3_DP                      | I/O  | USB2 Data+              |
| A11      | NU                           |      | Leave unused            |
| A12      | USB3_DM                      | I/O  | USB2 Data-              |
| A13      | COMRET                       | PWR  | Common Return           |
| A14      | COMRET                       | PWR  | Common Return           |
| A15      | NU                           |      | Leave unused            |
| A16      | NU                           |      | Leave unused            |
| A17      | NU                           |      | Leave unused            |
| A18      | NU                           |      | Leave unused            |
| A19      | COMRET                       | PWR  | Common Return           |
| A20      | COMRET                       | PWR  | Common Return           |
| A21      | NU                           |      | Leave unused            |
| A22      | NU                           |      | Leave unused            |
| A23      | NU                           |      | Leave unused            |
| A24      | NU                           |      | Leave unused            |
| A25      | COMRET                       | PWR  | Common Return           |
| A26      | COMRET                       | PWR  | Common Return           |
| A27      | TRD3-                        | I/O  | 1Gb Ethernet Data 3-    |



| Function | Communication and I/O |      |                                    |
|----------|-----------------------|------|------------------------------------|
| No       | Name                  | Туре | Description                        |
| A28      | CAN_L                 | 1/0  | CAN_L bus line (dominant low)      |
| A29      | TRD3+                 | 1/0  | 1Gb Ethernet Data 3+               |
| A30      | CAN_H                 | 1/0  | CAN_H bus line (dominant high)     |
| A31      | COMRET                | PWR  | Common Return                      |
| A32      | CAN_RET               | PWR  | CAN Communication Return           |
| A33      | TRD2-                 | 1/0  | 1Gb Ethernet Data 2-               |
| A34      | LED1_STATUS           | 0    | LED 1 Status                       |
| A35      | TRD2+                 | 1/0  | 1Gb Ethernet Data 2+               |
| A36      | LED2_STATUS           | 0    | LED 2 Status                       |
| A37      | COMRET                | PWR  | Common Return                      |
| A38      | SD_DAT2               | 1/0  | SD_Card data 2                     |
| A39      | TRD1-                 | 1/0  | 1Gb Ethernet Data 1-               |
| A40      | SD_DAT3               | 1/0  | SD_Card data 3                     |
| A41      | TRD1+                 | 1/0  | 1Gb Ethernet Data 1+               |
| A42      | SD_CMD                | 1/0  | SD_Card Command                    |
| A43      | COMRET                | PWR  | Common Return                      |
| A44      | SD_CLK                | 1/0  | SD_Card Clock                      |
| A45      | TRD0-                 | 1/0  | 1Gb Ethernet Data 0-               |
| A46      | SD_DAT0               | 1/0  | SD_Card data 0                     |
| A47      | TRD0+                 | 1/0  | 1Gb Ethernet Data 0+               |
| A48      | SD_DAT1               | 1/0  | SD_Card data 1                     |
| A49      | COMRET                | PWR  | Common Return                      |
| A50      | SD_CD                 | 1    | SD_Card Detect                     |
| A51      | LEDO_LINK100          | 0    | Ethernet link 100 Mbps             |
| A52      | NU                    |      | Leave unused                       |
| A53      | LED2_LINK1000         | 0    | Ethernet link 1000 Mbps            |
| A54      | NU                    |      | Leave unused                       |
| A55      | LED1_LINK_ACT         | 0    | TX/RX Activity                     |
| A56      | NU                    |      | Leave unused                       |
| A57      | LED_ECT_RUN           | 0    | EtherCAT Status LED - EtherCAT Run |



| Function | Communication and I/O |      |                                      |
|----------|-----------------------|------|--------------------------------------|
| No       | Name                  | Туре | Description                          |
| A58      | NU                    |      | Leave unused                         |
| A59      | LED_ECT_ERR           | О    | EtherCAT Status LED - EtherCAT Error |
| A60      | NU                    |      | Leave unused                         |
| A61      | COMRET                | PWR  | Common Return                        |
| A62      | NU                    |      | Leave unused                         |
| A63      | PHY0_TX+              | 0    | EtherCAT Master1 Transmit Data+      |
| A64      | COMRET                | PWR  | Common Return                        |
| A65      | PHY0_TX-              | О    | EtherCAT Master1 Transmit Data-      |
| A66      | NU                    |      | Leave unused                         |
| A67      | COMRET                | PWR  | Common Return                        |
| A68      | NU                    |      | Leave unused                         |
| A69      | NU                    |      | Leave unused                         |
| A70      | COMRET                | PWR  | Common Return                        |
| A71      | NU                    |      | Leave unused                         |
| A72      | NU                    |      | Leave unused                         |
| A73      | PHY1_TX+              | 0    | EtherCAT Master2 Transmit Data+      |
| A74      | NU                    |      | Leave unused                         |
| A75      | PHY11_TX-             | 0    | EtherCAT Master2 Transmit Data-      |
| A76      | COMRET                | PWR  | Common Return                        |
| A77      | COMRET                | PWR  | Common Return                        |
| A78      | NU                    |      | Leave unused                         |
| A79      | PHY00_RX+             | ı    | EtherCAT Master1 Receive Data+       |
| A80      | NU                    |      | Leave unused                         |
| A81      | PHY00_RX-             | 1    | EtherCAT Master1 Receive Data-       |
| A82      | COMRET                | PWR  | Common Return                        |
| A83      | PHYO_LED_SPEED        | 0    | EtherCAT Master1 LED Speed           |
| A84      | PHY1_RX+              | 1    | EtherCAT Master2 Receive Data+       |
| A85      | PHYO_LED_LINK_ACT     | 0    | EtherCAT Master1 LED LINK/ACT        |
| A86      | PHY1_RX-              | 1    | EtherCAT Master2 Receive Data-       |
| A87      | NU                    |      | Leave unused                         |



| Function | Communication and I/O |      |                                                                                            |
|----------|-----------------------|------|--------------------------------------------------------------------------------------------|
| No       | Name                  | Туре | Description                                                                                |
| A88      | COMRET                | PWR  | Common Return                                                                              |
| A89      | NU                    |      | Leave unused                                                                               |
| A90      | NU                    |      | Leave unused                                                                               |
| A91      | PHY1_LED_SPEED        | 0    | EtherCAT Master2 LED Speed                                                                 |
| A92      | NU                    |      | Leave unused                                                                               |
| A93      | PHY1_LED_LINK_ACT     | О    | EtherCAT Master2 LED LINK/ACT                                                              |
| A94      | COMRET                | PWR  | Common Return                                                                              |
| A95      | IO10_TX               | 0    | TXn – Transmit line, where n=10.  TXn should be connected to external  RS-485 transceiver  |
| A96      | RS232_TX1             | О    | RS232_TX1                                                                                  |
| A97      | 109_TX                | 0    | TXn – Transmit line, where n=9.  TXn should be connected to external  RS-485 transceiver   |
| A98      | IO5_TX                | 0    | TXn – Transmit line, where n=5.  TXn should be connected to external RS-485 transceiver    |
| A99      | RS232_RX1             | I    | RS232_RX1                                                                                  |
| A100     | IO4_RX                | I    | RXn – Receive line, where n=4.  RXn should be connected to external  RS-485 transceiver    |
| A101     | IO9_DIR               | 0    | DIRn – Direction line, where n=9.  DIRn should be connected to external RS-485 transceiver |
| A102     | IO2_TX                | 0    | TXn – Transmit line, where n=2.  TXn should be connected to external  RS-485 transceiver   |
| A103     | IO4_TX                | 0    | TXn – Transmit line, where n=4.  TXn should be connected to external  RS-485 transceiver   |
| A104     | NU                    |      | Leave unused                                                                               |
| A105     | NU                    |      | Leave unused                                                                               |
| A106     | NU                    |      | Leave unused                                                                               |
| A107     | ADC_SDOB              | I    | Channel B Serial data output from ADC                                                      |
|          |                       |      |                                                                                            |



| Function | Communication and I/O |      |                                                         |
|----------|-----------------------|------|---------------------------------------------------------|
| No       | Name                  | Туре | Description                                             |
| A108     | IO2_RX                | 1    | RXn – Receive line, where n=2.                          |
|          |                       |      | RXn should be connected to external RS-485 transceiver  |
| A109     | IO9_RX                | 1    | RXn – Receive line, where n=9.                          |
|          |                       |      | RXn should be connected to external RS-485 transceiver  |
| A110     | IO2_DIR               | О    | DIRn – Direction line, where n=2.                       |
|          |                       |      | DIRn should be connected to external RS-485 transceiver |
| A111     | IO10_DIR              | О    | DIRn – Direction line, where n=10.                      |
|          |                       |      | DIRn should be connected to external RS-485 transceiver |
| A112     | IO5_RX                | 1    | RXn – Receive line, where n=5.                          |
|          |                       |      | RXn should be connected to external RS-485 transceiver  |
| A113     | IO8_DIR               | 0    | DIRn – Direction line, where n=8.                       |
|          |                       |      | DIRn should be connected to external RS-485 transceiver |
| A114     | IO10_RX               | I    | RXn – Receive line, where n=10.                         |
|          |                       |      | RXn should be connected to external RS-485 transceiver  |
| A115     | SR_CLOCK              | О    | Clock of Serial extended IO Bus                         |
| A116     | NU                    |      | Leave unused                                            |
| A117     | SR_PLOAD              | О    | Load of Serial extended IO Bus                          |
| A118     | NU                    |      | Leave unused                                            |
| A119     | IO4_DIR               | 0    | DIRn – Direction line, where n=4.                       |
|          |                       |      | DIRn should be connected to external RS-485 transceiver |
| A120     | IO6_TX                | 0    | TXn – Transmit line, where n=6.                         |
|          |                       |      | TXn should be connected to external RS-485 transceiver  |
| A121     | ADC_SDOA              | I    | ADC Channel A Serial data output from ADC               |
| A122     | SR_DS_EXT_OUT         | 0    | Data out of Serial extended IO Bus                      |
|          |                       |      |                                                         |



| Function | Communication and I/O |      |                                                                                             |
|----------|-----------------------|------|---------------------------------------------------------------------------------------------|
| No       | Name                  | Туре | Description                                                                                 |
| A123     | IO8_RX                | I    | RXn – Receive line, where n=8. RXn should be connected to external RS-485 transceiver       |
| A124     | IO6_RX                | I    | RXn – Receive line, where n=6. RXn should be connected to external RS-485 transceiver       |
| A125     | ADC_SDI               | 0    | Serial data input for ADC                                                                   |
| A126     | NU                    | 1/0  | Leave unused                                                                                |
| A127     | IO7_TX                | 0    | TXn – Transmit line, where n=7.  TXn should be connected to external  RS-485 transceiver    |
| A128     | IO6_DIR               | 0    | DIRn – Direction line, where n=5.  DIRn should be connected to external RS-485 transceiver  |
| A129     | IO1_TX                | 0    | TXn – Transmit line, where n=1.  TXn should be connected to external  RS-485 transceiver    |
| A130     | NU                    |      | Leave unused                                                                                |
| A131     | IO7_DIR               | 0    | DIRn – Direction line, where n=7.  DIRn should be connected to external RS-485 transceiver  |
| A132     | NU                    |      | Leave unused                                                                                |
| A133     | IO1_RX                | I    | RXn – Receive line, where n=1.  RXn should be connected to external  RS-485 transceiver     |
| A134     | NU                    |      | Leave unused                                                                                |
| A135     | NU                    |      | Leave unused                                                                                |
| A136     | ADC_CLOCK             | 0    | CLOCK for ADC                                                                               |
| A137     | SR_DS_EXT_IN          | 1/0  | Data input of Serial extended IO Bus                                                        |
| A138     | IO7_RX                | I    | RXn – Receive line, where n=7. RXn should be connected to external RS-485 transceiver       |
| A139     | IO1_DIR               | 0    | DIRn – Direction line, where n=1.  DIRn should be connected to external  RS-485 transceiver |



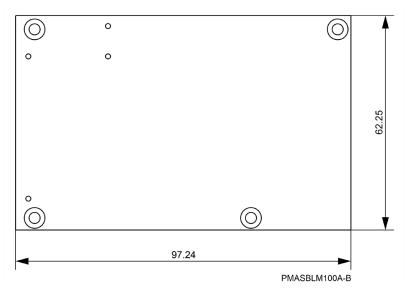

| Function  | Communication and I/O                      |      |                                                                                            |
|-----------|--------------------------------------------|------|--------------------------------------------------------------------------------------------|
| No        | Name                                       | Type | Description                                                                                |
| A140      | IO5_DIR                                    | 0    | DIRn – Direction line, where n=5.  DIRn should be connected to external RS-485 transceiver |
| A141      | ADC_RD/CONVST                              | 0    | ADC Read data/ Conversion start                                                            |
| A142      | IO8_TX                                     | 0    | TXn – Transmit line, where n=8.  TXn should be connected to external  RS-485 transceiver   |
| A143      | SR_OEn                                     | 0    | Output enable of Serial extended IO Bus                                                    |
| A144      | ADC_BUSY                                   | 1    | ADC Converter busy indicator                                                               |
| A145      | RSTOUTn                                    | 0    | Reset                                                                                      |
| A146      | NU                                         |      | Leave unused                                                                               |
| A147      | NU                                         | I    | Connect 3KOhm Pull Down (to COMRET)                                                        |
| A148      | NU                                         | 1    | Connect 3KOhm Pull Up (to VDD_3V3)                                                         |
| A149      | NU                                         | I    | Connect 3KOhm Pull Down (to COMRET)                                                        |
| A150      | NU                                         | I    | Connect 3KOhm Pull Down (to COMRET)                                                        |
| Connector |                                            |      |                                                                                            |
| 44.3      | J7  2  10  2  10  10  2  10  10  10  10  1 |      | PMASBLM100A-A                                                                              |

Table 2: Communication and I/O Pin Connectors





### 6.2 Mechanics



**Figure 3: Pin Physical Dimensions** 

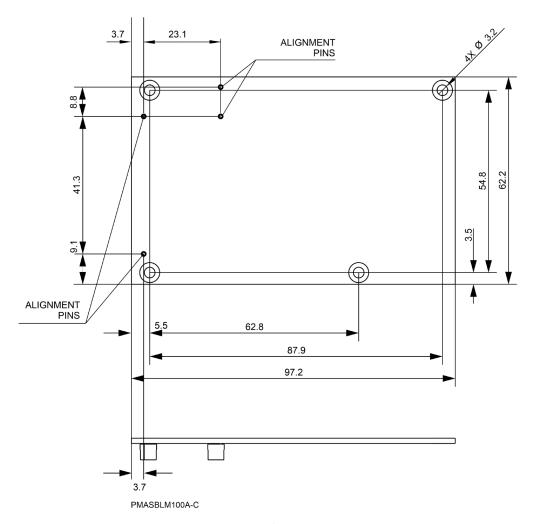



Figure 4: Pin Detail Measurements





### **6.2.1 Mating Connector Types**

| Mating Connector              | Details                        |
|-------------------------------|--------------------------------|
| Power Connector               |                                |
| 10 pin, 2 rows, 0.5mm         |                                |
|                               | PMASBLM-ERM5-010-05            |
|                               | Samtec ERM5-010-05.0-L-DV-K-TR |
| Communication & I/O Connector |                                |
| 75 pin, 2 rows, 0.5mm         | PMASBLM-ERM5-075-05            |
|                               | Samtec ERM5-075-05.0-L-DV-K-TR |





#### 6.3 CAN Communication

#### 6.3.1 Overview

Typically, the CANbus is set with a pair of twisted wires. The Bus ends are terminated with a 120 ohm resistor at each end. This results in a bus load of 60 ohm. Close matching of the termination resistor with the cable impedance ensures that the data signals are not reflected at the bus ends.

It must be emphasized that the CANbus is actually a "3 wires" communication, especially out of the board. Theoretical the number of units that can be connected to the CAN bus is not limited. However, the total actual number of units that can be connected will be limited by the delay times and the bus loads in the bus lines.

The CANbus includes the following signals: CAN\_L, CAN\_H, and GND. Make sure that the GND signal also connected via the cable. Figure 5 displays the general CAN connectivity.

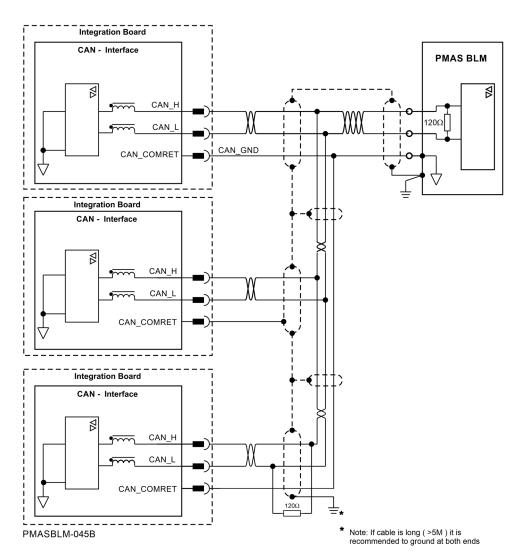



Figure 5. CANbus Connections



#### Important:

A 120  $\Omega$  termination resistor should be connected at each end of the network cable.





### 6.3.2 CAN Speed

The CAN Bus standard specifies the Max theoretical cable length @1Mbits/sec as 40 m. However, the CAN is determined by various factors such as:

- Loop delays of the connected bus nodes and the delay of the bus lines, consist of:
  - CAN controller and Transceiver Delays (vary between 30÷150 nano-sec)
  - Optional Isolation Delays (vary between 20÷75 nano-sec)
  - Typical Bus line delays
  - Delay connector
- Differences in bit time quantum length due to relative oscillator tolerance between nodes.
- Signal amplitude drop due to the series resistance of the bus cable and the input resistance of bus nodes.

In order to analyze the actual max cable length and number of nodes that can be safely used in a specific configuration, all the above factors should be taken into consideration.

#### 6.3.3 CAN Interface

The CAN Interface block includes common mode choke and CAN Bus Protector for ESD and other harmful transient voltage events. Figure 6 describes an example for the P-MAS-BLM connected to the RJ-45 in the PCB.

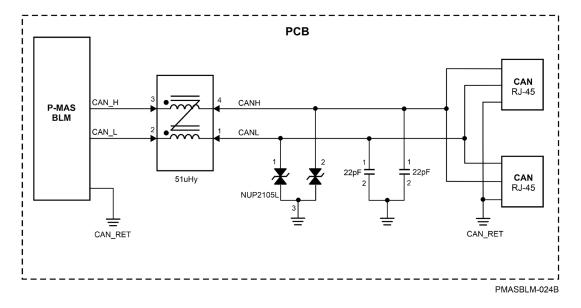



Figure 6: P-MAS-BLM CAN interface connected to RJ-45





#### 6.3.4 CAN Communication over the PCB

Figure 7 describes the connections between the:

- PMAS-BLM to the External CAN network via J-45
- Connection to the drive module as in the G-Whistle or G-Trombone via PCB. The PMAS-BLM is connected to one of the CAN Interfaces, either Isolated or non-isolated.
- The CANBUS (CANH, CANL) passes into the PCB to the other drive module, and also connects to the RJ-45 for CAN Devices external connectivity.

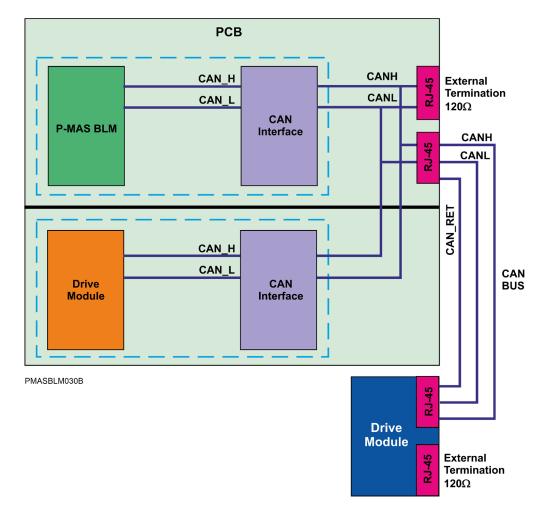



Figure 7: P-MAS-BLM Connections to the External CAN network via RJ-45 and also to Drive Module





### 6.4 USB Device Connections

The following is the USB 2.0 device pin description:

| USB Pin         | I/O | Description                 |
|-----------------|-----|-----------------------------|
| USB2_DP         | I/O | USB Data+                   |
| USB2_DM         | I/O | USB Data-                   |
| USB_DEVICE_VBUS | 1   | Monitor for the USB voltage |

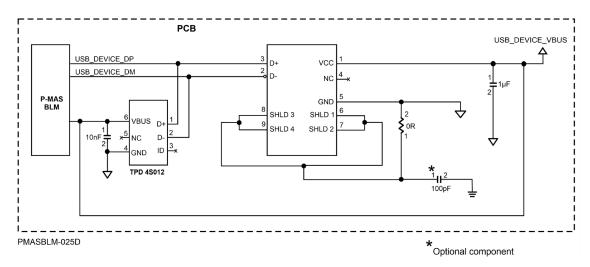



Figure 8: USB Device implementation





### 6.5 USB Host Connections

The following is the USB 3.0 Host pin description:

| USB Pin       | I/O | Description                             |
|---------------|-----|-----------------------------------------|
| USB3_DP       | I/O | USB Data+                               |
| USB3_DM       | I/O | USB Data-                               |
| USB_HOST_VBUS | 0   | 5V Output for USB Devices (up to 100mA) |

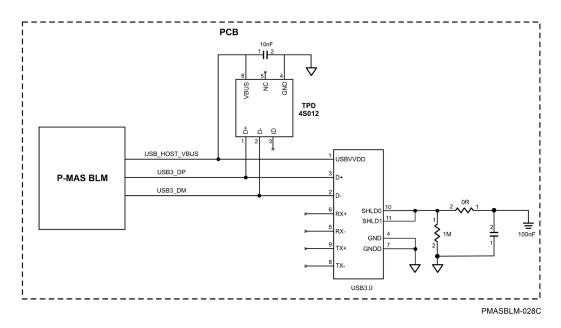



Figure 9: USB Host implementation





### 6.6 Ethernet Communications

The Ethernet signals are used to connect between the PMAS-BLM and the Host Computer. The following signals originate from the Physical Layer Transceiver (PHY) which provides the Ethernet 1000Base-T. Pin Descriptions:

| <b>Ethernet Pins</b> | I/O | Description                                                                              |  |
|----------------------|-----|------------------------------------------------------------------------------------------|--|
| TRD0+                | 1/0 | Differential Transmit/Receive signal Data0+ from the Ethernet PHY to RJ-45 with Magnetic |  |
| TRD0-                | I/O | Differential Transmit/Receive signal Data0-from the Ethernet PHY to RJ-45 with Magnetic  |  |
| TRD1+                | I/O | Differential Transmit/Receive signal Data1+from the Ethernet PHY to RJ-45 with Magnetic  |  |
| TRD1-                | I/O | Differential Transmit/Receive signal Data1-from the Ethernet PHY to RJ-45 with Magnetic  |  |
| TRD2+                | I/O | Differential Transmit/Receive signal Data2+from the Ethernet PHY to RJ-45 with Magnetic  |  |
| TRD2-                | I/O | Differential Transmit/Receive signal Data2-from the Ethernet PHY to RJ-45 with Magnetic  |  |
| TRD3+                | I/O | Differential Transmit/Receive signal Data3+from the Ethernet PHY to RJ-45 with Magnetic  |  |
| TRD3-                | I/O | Differential Transmit/Receive signal Data3-from the Ethernet PHY to RJ-45 with Magnetic  |  |
| LEDO_LINK100         | 0   | Orange - 100Mbps link                                                                    |  |
| LED2_LINK1000        | 0   | Green - 1000Mbps link                                                                    |  |
| LED1_LINK_ACT        | 0   | Solid Green – Link Up<br>Blinking Green - TX/RX Activity                                 |  |

Figure 10 describes the RJ-45 magnetic connection to the Ethernet port.

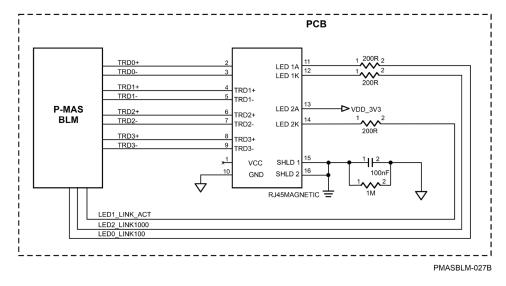



Figure 10: Ethernet implementation





### 6.7 EtherCAT Communications

There are two EtherCAT ports:

- **EtherCAT Master1 port**: This is the main port. Connect the EtherCAT network to this port. This port should be the first device in the EtherCAT network.
- EtherCAT Master2 port: Not used. It is an optional port for future requirements such as redundancy.

#### 6.7.1 EtherCAT Master1 Port

The following signals originate from the Physical Layer Transceiver (PHY) which provides the Ethernet 10Base-T/100Base-TX.

| EtherCAT IN Pins  | I/O | Description                                                                   |
|-------------------|-----|-------------------------------------------------------------------------------|
| PHY0_TX+          | 0   | Differential Transmit signal Data+ for EtherCAT Master1 from the Ethernet PHY |
| PHY0_TX-          | 0   | Differential Transmit signal Date- for EtherCAT Master1 from the Ethernet PHY |
| PHY0_RX+          | I   | Differential Receive signal Data+ for EtherCAT Master1 to the Ethernet PHY    |
| PHY0_RX-          | I   | Differential Receive signal Data- for EtherCAT Master1 to the Ethernet PHY    |
| PHY0_LED_LINK_ACT | 0   | LED will be ON when the link is OK                                            |
| PHYO_LED_SPEED    | 0   | Indicates 10Mb/s or 100Mb/s                                                   |
| VDD_3V3           | 0   | +3.3V to the transformer RJ45 connection                                      |

#### 6.7.2 EtherCAT Master2 Port

The following signals originate from the Physical Layer Transceiver (PHY) which provides the Ethernet 10Base-T/100Base-TX.

| EtherCAT IN Pins  | I/O | Description                                                                   |
|-------------------|-----|-------------------------------------------------------------------------------|
| PHY1_TX+          | 0   | Differential Transmit signal Data+ for EtherCAT Master2 from the Ethernet PHY |
| PHY1_TX-          | 0   | Differential Transmit signal Date- for EtherCAT Master2 from the Ethernet PHY |
| PHY1_RX+          | I   | Differential Receive signal Data+ for EtherCAT Master2 to the Ethernet PHY    |
| PHY1_RX-          | I   | Differential Receive signal Data- for EtherCAT Master2 to the Ethernet PHY    |
| PHY1_LED_LINK_ACT | 0   | LED will be ON when the link is OK                                            |
| PHY1_LED_SPEED    | 0   | Indicates 10Mb/s or 100Mb/s                                                   |
| VDD_3V3           |     | +3.3V to the transformer RJ45 connection                                      |





### 6.7.3 EtherCAT Connectivity to RJ-45

The following figure describes the connectivity of the EtherCAT PHY signals to the RJ-45 connector with magnetic.

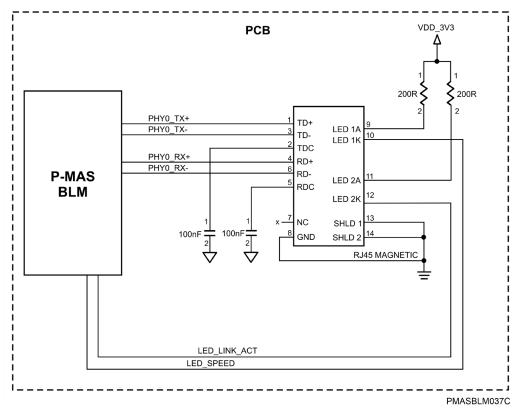



Figure 11: EtherCAT implementation with RJ-45

Figure 12 describes the P MAS-BLM with RJ-45 connected to the EtherCAT Drive Module via the Cable. The PMAS-BLM should be the first device in the EtherCAT network.

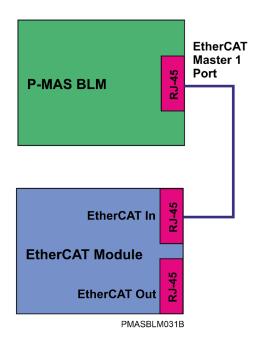
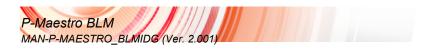




Figure 12: P-MAS-BLM with RJ-45 connected to an EtherCAT module





# 6.7.4 Connecting the PMAS-BLM EtherCAT Port via the PCB with Capacitive Coupling

When the point to point Ethernet connection is made through a PCB (and not through a cable), the PCB replaces the RJ-45 and the twisted pair cable. The connection between the P-MAS-BLM to the other EtherCAT drive module in the PCB is made with Capacitive Coupling.

Figure 13 describes the EtherCAT network that includes:

- P-MAS BLM connected to EtherCAT Module via PCB with capacitive decoupling. The PHY signals of the P-MAS BLM (PHY0) are connected to the EtherCAT Module, PHY signals of the EtherCAT In, via capacitors. The P-MAS BLM should be the first device in the EtherCAT network.
- The P-MAS BLM TX signals are connected to the EtherCAT ModuleRX signals. Similarly, the P-MAS BLM RX signals connected to the EtherCAT ModuleTX signals.
- EtherCAT Drive Module connected to the EtherCAT Drive Module via the Cable. The cable is connected between the EtherCAT out port of the EtherCAT Drive Module to the EtherCAT In port of the EtherCAT Drive Module.

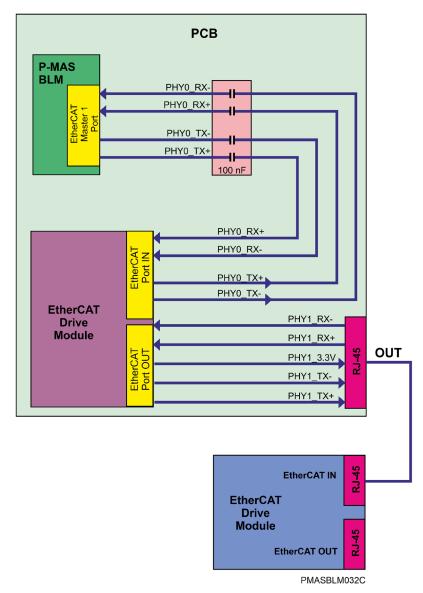



Figure 13: P-MAS-BLM and G-Whistle connections via PCB traces with Capacitors





### 6.8 Micro SD Card Connections

The following describes the Micro SD card connections:

| SD Card Pin | I/O | Description            |
|-------------|-----|------------------------|
| SD_DAT0     | I/O | SD Card Data 0         |
| SD_DAT1     | I/O | SD Card Data 1         |
| SD_DAT2     | I/O | SD Card Data 2         |
| SD_DAT3     | I/O | SD Card Data 3         |
| SD_CMD      | I/O | SD Card Command        |
| SD_CLK      | 0   | SD Card Clock          |
| SD_CD       | I   | SD Card Detection      |
| VDD_SD      | PWR | SD Card Supply Voltage |

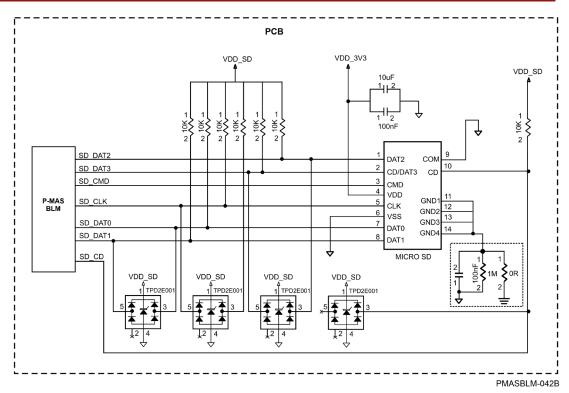
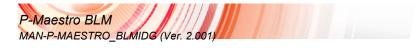




Figure 14: P-MAS-BLM Micro SD Card Connections





## 6.9 Analog Inputs Interface

The 4 Analog Inputs can be read using a Dual, 1MSPS 16bit, 4x2 Channel Simultaneous Sampling ADC by TI (P/N: ADS8363). For a detailed connection diagram refer to the PMAS\_BLM\_V1.DSN.

The following describes the Analog Inputs Interface pins:

| Pin           | I/O | Description                        |  |
|---------------|-----|------------------------------------|--|
| ADC_SDOA      | 0   | Serial data output for converter A |  |
| ADC_SDOB      | 0   | Serial data output for converter B |  |
| ADC_SDI       | I   | Serial data input                  |  |
| ADC_CLOCK     | I   | External clock input               |  |
| ADC_BUSY      | 0   | Converter busy indicator           |  |
| ADC_RD/CONVST | I   | Read data/ Conversion start        |  |





## 6.10 Extended I/O's Interface (optional)

Optionally, an Extended I/O's interface with up to 24 digital inputs (TTL level) and up to 24 digital outputs (TTL level) may be connected to the P-MAS BLM. The Extended I/O's interface is implemented using parallel to serial and serial to parallel shift registers.

For a detailed connection diagram refer to the drawing PMAS\_BLM\_V1.DSN.

The following describes the Extended I/O Interface pins:

| Pin           | I/O | Description                                                                       |
|---------------|-----|-----------------------------------------------------------------------------------|
| SR_PLOAD      | 1   | Input:                                                                            |
|               |     | The PLOAD signal loads the data to the serial shift register. The data is         |
|               |     | sampled to the serial shift register at the rising edge of the PLOAD.             |
|               |     | Output:                                                                           |
|               |     | The PLOAD latches the data from the serial shift register to the parallel         |
|               |     | register. The data is latched to the parallel register at the falling edge of the |
|               |     | PLOAD.                                                                            |
| SR_DS_EXT_OUT | 1   | This signal is an output data from pin based module to the serial shift           |
|               |     | register.                                                                         |
| SR_OEn        | I   | Extended outputs enable                                                           |
| SR_DS_EXT_IN  | 0   | This signal is an input data from the serial shift register to the pin based      |
|               |     | module.                                                                           |
| SR_CLOCK      | 1   | The Clock is used as serial shift clock of the input or output serial shift       |
|               |     | register.                                                                         |





## 6.11 Differential I/O Interface (optional)

Optionally, up to 9 differential I/O's using RS485 transceivers may be connected to the P-MAS BLM. Each RS485 transceiver interfaces with three P-MAS BLM signals.

For a detailed connection diagram refer to the drawing PMAS\_BLM\_V1.DSN.

The following describes the Differential I/O Interface pins:

| Pin     | I/O | Description     |
|---------|-----|-----------------|
| IO1_TX  | 1   | I/O 1 Transmit  |
| IO1_RX  | 0   | I/O 1 Receive   |
| IO1_DIR | I   | I/O 1 Direction |
| IO2_TX  | I   | I/O 2 Transmit  |
| IO2_RX  | 0   | I/O 2 Receive   |
| IO2_DIR | I   | I/O 2 Direction |
| IO4_TX  | I   | I/O 4 Transmit  |
| IO4_RX  | 0   | I/O 4 Receive   |
| IO4_DIR | I   | I/O 4 Direction |
| IO5_TX  | I   | I/O 5 Transmit  |
| IO5_RX  | 0   | I/O 5 Receive   |
| IO5_DIR | I   | I/O 5 Direction |
| IO6_TX  | I   | I/O 6 Transmit  |
| IO6_RX  | 0   | I/O 6 Receive   |
| IO6_DIR | I   | I/O 6 Direction |
| IO7_TX  | I   | I/O 7 Transmit  |
| IO7_RX  | 0   | I/O 7 Receive   |
| IO7_DIR | I   | I/O 7 Direction |
| IO8_TX  | I   | I/O 8 Transmit  |
| IO8_RX  | 0   | I/O 8 Receive   |
| IO8_DIR | I   | I/O 8 Direction |
| 109_TX  | I   | I/O 9 Transmit  |
| IO9_RX  | 0   | I/O 9 Receive   |
| IO9_DIR | 1   | I/O 9 Direction |
| IO10_TX | 1   | I/O 10 Transmit |
| IO10_RX | 0   | I/O 10 Receive  |



| Pin      | I/O | Description      |
|----------|-----|------------------|
| IO10_DIR | 1   | I/O 10 Direction |

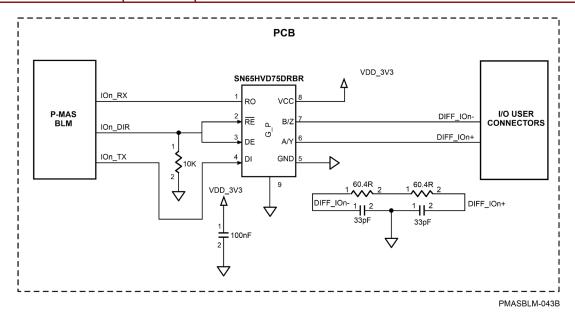
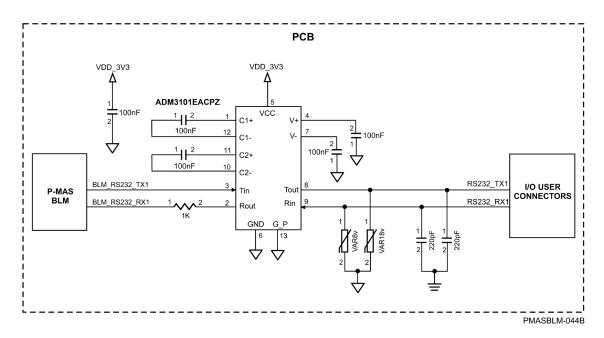



Figure 15: Differential I/O Interface Connections






### 6.12 RS232 Interface

The RS232 Interface has a single RS232 port to connect with the P-MAS BLM.

For a detailed connection diagram refer to the drawing PMAS\_BLM\_V1.DSN.

The following describes the RS232 Interface pins:

| Pin      | I/O | Description    |
|----------|-----|----------------|
| RS232_TX | 1   | RS232 Transmit |
| RS232_RX | 0   | RS232 Receive  |



**Figure 16: RS232 Interface Connections** 





### 6.13 Layout Guidelines

#### 6.13.1 PCB

It is recommended to use at least 4 layers on the PCB, for the routing of the EtherCAT signals. The following is an example of the Stackup:

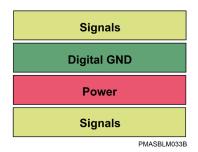



Figure 17: Example of Layered Stackup on PCB

The Digital plan should be continuous and not fragmented.

#### 6.13.2 Connection to RJ-45 with Magnetic

The digital ground planes should not be placed under the RJ-45.

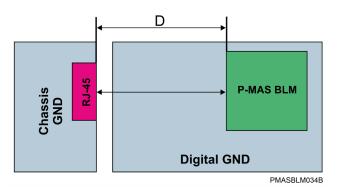
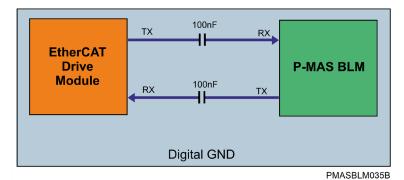




Figure 18: RJ-45 Layout

The P-MAS BLM should be placed as close as possible to the magnetic. If there are limitations on the PCB layout, preventing the P-MAS BLM from being positioned close to the magnet, then the trace length from the P-MAS BLM to the magnetic should not be longer than 5 inches (D).

#### **6.13.3 Connection with Capacitor**

The digital ground planes **should** be placed under the capacitor parts.



T W/ (OBEN)

Figure 19: Transform Layout





#### 6.13.4 EtherCAT Differential Signal Layout Guidelines

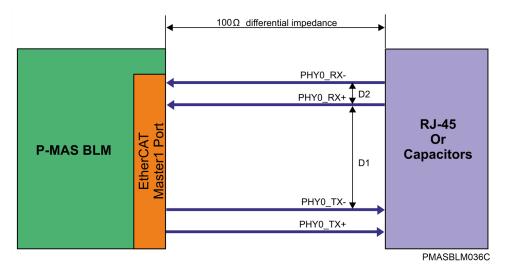
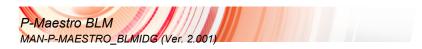




Figure 20: EtherCAT Differential Signal Layout

- The following is a guide to the differential signal layout
- The differential pairs (PHY0\_TX±, PHY0\_RX±) should be designed to a 100 ohm ± 10% differential impedance according to the PCB manufacturer stackup (D2).
- The trace width should be determined by the required trace impedance according to the PCB manufacturer stackup.
- The spacing D1 between the differential pairs should be as large as possible.
- Route the differential pairs as straight as possible, maintaining them in parallel for differential pairs.
- Route the differential pairs symmetrically, at equal lengths and close together whenever possible.
- Do not route digital signals under the magnetic parts
- Avoid using VIAS on the traces of the differential pairs.
- Avoid routing the signal trace at a right-angle. Instead route it using multiple 45° angles.





#### 6.13.5 1GB Ethernet Differential Signal Layout Guidelines

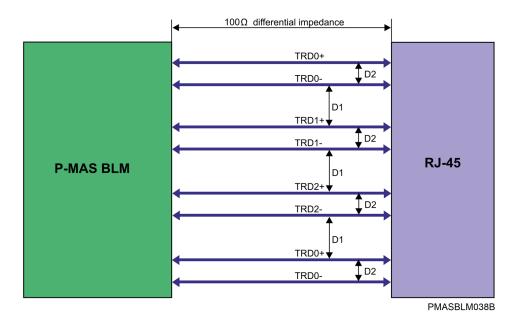




Figure 21: 1GB Ethernet Differential Signal Layout

The following is a guide to the differential signal layout

- The differential pairs (TRD0±, TRD1±, TRD2±, and TRD3±) should be designed to a 100 ohm ± 10% differential impedance according to the PCB manufacturer stackup (D2).
- The trace width should be determined by the required trace impedance according to the PCB manufacturer stackup.
- The spacing D1 between the differential pairs should minimum 50mils.
- The spacing between the differential pairs to other high speed periodic signals should be minimum 50 mils.
- Keep the differential pairs as short as possible.
- Length matching between differential pairs ±15mils
- Length matching of differential pair 5 mils maximum
- Route the differential pairs as straight as possible, maintaining them in parallel for differential pairs.
- Route the differential pairs symmetrically, at equal lengths and close together whenever possible.
- Do not route digital signals under the magnetic parts
- Avoid using VIAS on the traces of the differential pairs.
- Avoid routing the signal trace at a right-angle. Instead route it using multiple 45° angles.





#### 6.13.6 USB Host/Device Differential Signal Layout Guidelines

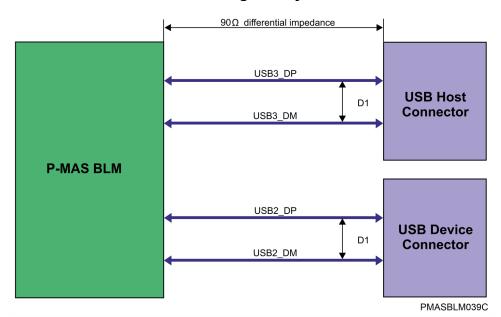



Figure 22: USB Host/Device Differential Signal Layout

The following guidelines are recommended:

- The differential pairs should be designed to a 90 ohm ± 10% differential impedance according to the PCB manufacturer stuck up (D1).
- The trace width should be determined by the required trace impedance according to the PCB manufacturer stuck up.
- The spacing between the differential pairs to other high speed periodic signals should be minimum 50 mils.
- Keep the differential pairs as short as possible.
- Route the differential pairs as straight as possible, maintaining them in parallel for differential pairs.
- Route the differential pairs symmetrically, at equal lengths and close together whenever possible.
- Do not route digital signals under the magnetic parts
- Avoid using VIAS on the traces of the differential pairs.
- Avoid routing the signal trace at a right-angle. Instead route it using multiple 45° angles.





#### 6.13.7 CAN Layout Guidelines

The following guidelines are recommended:

- Locate the CAN Bus Protector Diodes, Common Mode Choke and filter capacitor close to the CAN Connector.
- The length traces of the CAN Bus Protector Diodes should be as short as possible.
- For optimum layout, there should be an inner ground layer. This is optimal from the immunity point of view.
- The digital ground planes should not be placed under the magnetic parts (common mode choke)
- The CAN lines are differential lines. They should be routed together and as close as possible.
- Do not route digital signals under the magnetic parts (Common mode choke)

#### 6.13.8 Micro SD Card Layout Guidelines

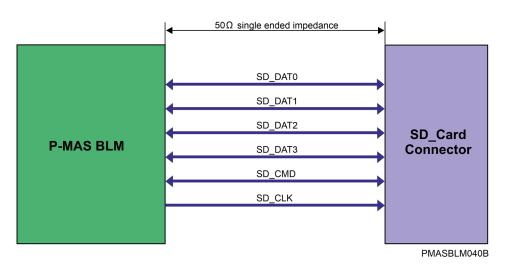




Figure 23: Micro SD Card Signal Layout

The following guidelines are recommended:

- The SD\_CARD single ended traces should be designed to a 50 ohm ± 10% impedance according to the PCB manufacturer stuck up.
- The trace width should be determined by the required trace impedance according to the PCB manufacturer stuck up.
- Keep the traces as short as possible.
- Length matching between the traces ±10mils
- Route the traces as straight as possible.
- Do not route digital signals under magnetic parts.
- Avoid routing the signal traces at a right-angle. Instead route it using multiple 45° angles.





# Chapter 7: Heat Dissipation

For full power output capability the P-Maestro BLM is designed to be mounted on an external heat-sink. It is highly recommended that the "Wall" on which the P-Maestro BLM is mounted will have heat dissipation capabilities.

Elmo recommends using the Thermal Pads (PN IMT-30GWHI01) supplied in the module kit. To apply the Thermal Pads do the following before connecting a heat sink (optional) to the P-Maestro BLM:

1. Remove the back-adhesive cover from a Thermal Pad and stick the pad to the P-Maestro BLM as shown in Figure 24.

Repeat the above step 1 for the remaining Thermal Pads (Figure 24)

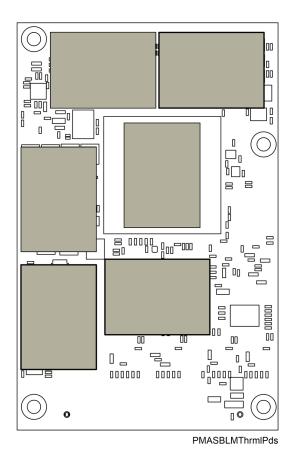



Figure 24: Mounting the Thermal Pads





Install/Mount a heat sink to the front of the P-Maestro BLM to cover the Thermal Pads
 Make sure that the gap between the Heat Sink and the P-Maestro BLM is **5.0mm** as shown in Figure
 25.

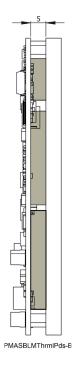
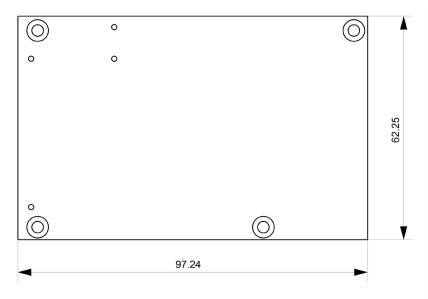
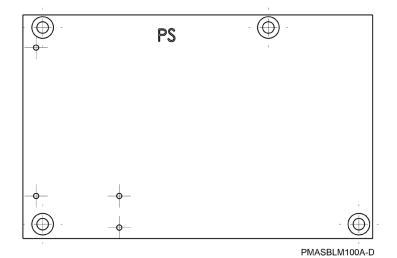
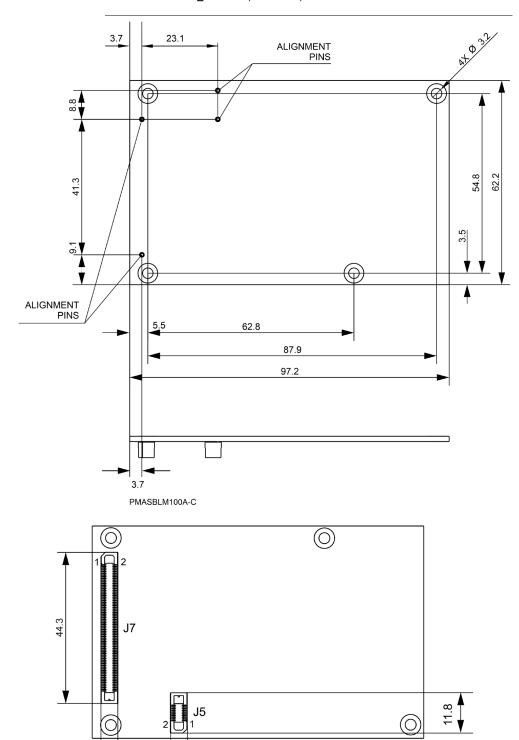




Figure 25: Defining the gap between the Heat Sink and Thermal Pads







# Chapter 8: P-Maestro BLM Dimensions











PMASBLM100A-E





# Chapter 9: Compliance with Standards

The P-Maestro BLM network motion controller has been developed, produced, tested and documented in accordance with the relevant standards. Elmo Motion Control is not responsible for any deviation from the configuration and installation described in this documentation. Furthermore, Elmo is not responsible for the performance of new measurements or ensuring that regulatory requirements are met.

### 9.1 Low Voltage Directive

| Specification                                                                                                                                                                                                                                        | Details                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| The related standards below apply to the performance of the motion controller as stated in the environmental conditions paragraph 3.8 Environmental Conditions.  The P-Maestro BLM does not require UL compliance, as its maximum voltage is 32 VDC. |                                  |  |
| In compliance with EN 60204-1                                                                                                                                                                                                                        | Low Voltage Directive 73/23/EEC  |  |
| In compliance with CE 2006/95/EC                                                                                                                                                                                                                     | Low-voltage directive 2006/95/EC |  |

## 9.2 Other Compliant Standards

| Quality Assurance                                                     |                                                                                                                                                 |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| ISO 9001:2008                                                         | Quality Management                                                                                                                              |
| Design                                                                |                                                                                                                                                 |
| <ul> <li>IPC-D-275</li> <li>IPC-SM-782</li> <li>IPC-CM-770</li> </ul> | Printed wiring for electronic equipment (clearance, creepage, spacing, conductors sizing, etc.)                                                 |
| Reliability                                                           |                                                                                                                                                 |
| MIL-HDBK- 217F                                                        | Reliability prediction of electronic equipment (rating, de-rating, stress, etc.)                                                                |
| Workmanship                                                           |                                                                                                                                                 |
| In compliance with IPC-A-610, level 3                                 | Acceptability of electronic assemblies                                                                                                          |
| РСВ                                                                   |                                                                                                                                                 |
| In compliance with IPC-A-600, level 3                                 | Acceptability of printed circuit boards                                                                                                         |
| Packing                                                               |                                                                                                                                                 |
| In compliance with EN 100015                                          | Protection of electrostatic sensitive devices                                                                                                   |
| Environmental                                                         |                                                                                                                                                 |
| In compliance with 2002/96/EC                                         | Waste Electrical and Electronic Equipment regulations (WEEE)  Note: Out-of-service Elmo drives should be sent to the nearest Elmo sales office. |
| In compliance with <b>2002/95/EC</b> (effective July 2006)            | Restrictions on Application of Hazardous Substances in Electric and Electronic Equipment (RoHS)                                                 |

Go Safer, Smarter, Smaller, Simpler. Go Platinum. Platinum ZZ Elmo